
KKKK
Kubernetes
Best Practices

E-book series

ii

Contents
Introduction ……...……..….……………..…………….……… iv
Multi-tenancy: Best practices for cluster isolation …................................…………………......……… 1

Design clusters for multi-tenancy .. 1
Logically isolate clusters .. 2
Physically isolate clusters .. 3

Multi-tenancy: Best practices for basic scheduler features ...………..…… 4
Enforce resource quotas .. 4
Plan for availability using pod disruption budgets ... 5
Regularly check for cluster issues with kube-advisor .. 7

Multi-tenancy: Best practices for advanced scheduler features ……..… 8
Provide dedicated nodes using taints and tolerations .. 9
Control pod scheduling using node selectors and affinity ... 10

Multi-tenancy: Best practices for authentication and authorization ….................................…… 13
Use Azure Active Directory .. 13
Use role-based access controls (RBAC) ... 14
Use pod identities ... 15

Security: Best practices for cluster security and upgrades …..…… 17
Secure access to the API server and cluster nodes .. 17
Secure container access to resources .. 18
Regularly update to the latest version of Kubernetes ... 22
Process node updates and reboots using kured ... 23

Security: Best practices for container image management and security …...........................…… 24
Secure the images and run time .. 25
Automatically build new images on base image update ... 25

Security: Best practices for pod security …...……...……….....................…………………………..…… 26
Secure pod access to resources ... 27
Limit credential exposure ... 28

iii

Network and storage: Best practices for network connectivity ….....….....................…...…..…… 30
Choose the appropriate network model .. 30
Distribute ingress traffic ... 32
Secure traffic with a web application firewall (WAF) .. 34
Control traffic flow with network policies ... 35
Securely connect to nodes through a bastion host .. 36

Network and storage: Best practices for storage and backups ……........................…...........…… 37
Choose the appropriate storage type ... 37
Size the nodes for storage needs ... 38
Dynamically provision volumes .. 39
Secure and back up your data ... 40

Running enterprise-ready workloads ……...…..…… 41
Plan for multi-region deployment... 42
Use Azure Traffic Manager to route traffic .. 42
Enable geo-replication for container images .. 44
Remove service state from inside containers ... 45
Create a storage migration plan .. 45

Conclusion ……...…… 47

iv

Kubernetes best
practices

INTRODUCTION

Introduction
This guide gives recommendations around multi-tenancy, security, net-
work and storage, and running enterprise-ready workloads. It is aimed at
developers and application owners who are familiar with Kubernetes and
have a good understanding of Azure Kubernetes Service (AKS) core con-
cepts. The following best practices are based on real-world deployments
of Kubernetes that we have gathered directly from our experience in the
field.

If you are following our Kubernetes Learning Path, this content is part
of the last step, “Operational best practices for Kubernetes,” see 50 days
from zero to hero with Kubernetes for more.

1 MULTI-TENANCY | Best practices for cluster isolation

Multi-tenancy

As you manage clusters in Azure Kubernetes Service (AKS), you often
need to isolate teams and workloads. AKS provides flexibility in how you
can run multi-tenant clusters and isolate resources. To maximize your in-
vestment in Kubernetes, these multi-tenancy and isolation features should
be understood and implemented.

This best practices article focuses on isolation for cluster operators. In this
article, you learn how to:

Plan for multi-tenant clusters and separation of resources
Use logical or physical isolation in your AKS clusters

•
•

Best practices for cluster isolation

• Scheduling includes the use of basic features such as resource quotas and pod disruption
budgets. For more information about these features, see Best practices for basic scheduler
features in AKS.

More advanced scheduler features include taints and tolerations, node selectors, and node
and pod affinity or anti-affinity. For more information about these features, see Best
practices for advanced scheduler features in AKS.

Networking includes the use of network policies to control the flow of traffic in and out of pods.

•

Kubernetes provides features that let you logically isolate teams and workloads in the same cluster.
The goal should be to provide the least number of privileges, scoped to the resources each team
needs. A Namespace in Kubernetes creates a logical isolation boundary. Additional kubernetes
features and considerations for isolation and multi-tenancy include the following areas:

Design clusters for multi-tenancy

•

2 MULTI-TENANCY | Best practices for cluster isolation

Authentication and authorization include the user of role-based access control (RBAC) and
Azure Active Directory (AD) integration, pod identities, and secrets in Azure Key Vault. For more
information about these features, see Best practices for authentication and authorization in AKS.

Containers include pod security policies, pod security contexts, scanning images and runtimes
for vulnerabilities. Also involves using App Armor or Seccomp (Secure Computing) to restrict
container access to the underlying node.

•

•

Best practice guidance - Use logical isolation to separate teams and projects. Try to minimize the
number of physical AKS clusters you deploy to isolate teams or applications.

With logical isolation, a single AKS cluster can be used for multiple workloads, teams, or environments.
Kubernetes Namespaces form the logical isolation boundary for workloads and resources.

Logically isolate clusters

Logical separation of clusters usually provides a higher pod density than physically isolated clusters.
There’s less excess compute capacity that sits idle in the cluster. When combined with the Kubernetes
cluster autoscaler, you can scale the number of nodes up or down to meet demands. This best prac-
tice approach to autoscaling lets you run only the number of nodes required and minimizes costs.

Kubernetes environments, in AKS or elsewhere, aren’t completely safe for hostile multi-tenant usage.
Additional security features such as Pod Security Policy and more fine-grained role-based access con-
trols (RBAC) for nodes make exploits more difficult. However, for true security when running hostile
multi-tenant workloads, a hypervisor is the only level of security that you should trust. The security
domain for Kubernetes becomes the entire cluster, not an individual node. For these types of hostile
multi-tenant workloads, you should use physically isolated clusters.

3 MULTI-TENANCY | Best practices for cluster isolation

Best practice guidance - Minimize the use of physical isolation for each separate team or application
deployment. Instead, use logical isolation, as discussed in the previous section.

A common approach to cluster isolation is to use physically separate AKS clusters. In this isolation
model, teams or workloads are assigned their own AKS cluster. This approach often looks like the
easiest way to isolate workloads or teams, but adds additional management and financial overhead.
You now have to maintain these multiple clusters, and have to individually provide access and assign
permissions. You’re also billed for all the individual nodes.

Physically isolate clusters

Physically separate clusters usually have a low pod density. As each team or workload has their own
AKS cluster, the cluster is often over-provisioned with compute resources. Often, a small number of
pods is scheduled on those nodes. Unused capacity on the nodes can’t be used for applications or
services in development by other teams. These excess resources contribute to the additional costs in
physically separate clusters.

4 MULTI-TENANCY | Best practices for basic scheduler features

Multi-tenancy

As you manage clusters in Azure Kubernetes Service (AKS), you often
need to isolate teams and workloads. The Kubernetes scheduler provides
features that let you control the distribution of compute resources, or limit
the impact of maintenance events.

This best practices article focuses on basic Kubernetes scheduling features
for cluster operators. In this article, you learn how to:

Use resource quotas to provide a fixed amount of resources to teams
or workloads

Limit the impact of scheduled maintenance using pod disruption
budgets

Check for missing pod resource requests and limits using the
kube-advisor tool

•

•

Best practices for basic scheduler features

•

Best practice guidance - Plan and apply resource quotas at the namespace level. If pods don’t
define resource requests and limits, reject the deployment. Monitor resource usage and adjust quotas
as needed.

Resource requests and limits are placed in the pod specification. These limits are used by the
Kubernetes scheduler at deployment time to find an available node in the cluster. These limits and
requests work at the individual pod level. For more information about how to define these values,
see Define pod resource requests and limits.

To provide a way to reserve and limit resources across a development team or project, you should use
resource quotas. These quotas are defined on a namespace, and can be used to set quotas on the
following basis:

Enforce resource quotas

• Compute resources, such as CPU and memory, or GPUs.

5 MULTI-TENANCY | Best practices for basic scheduler features

• Storage resources, includes the total number of volumes or amount of disk space for a given
storage class.

Object count, such as maximum number of secrets, services, or jobs can be created.•

Kubernetes doesn’t overcommit resources. Once the cumulative total of resource requests or limits
passes the assigned quota, no further deployments are successful.

When you define resource quotas, all pods created in the namespace must provide limits or requests
in their pod specifications. If they don’t provide these values, you can reject the deployment. Instead,
you can configure default requests and limits for a namespace.

The following example YAML manifest named dev-app-team-quotas.yaml sets a hard limit of a total of
10 CPUs, 20Gi of memory, and 10 pods:

This resource quota can be applied by specifying the namespace, such as dev-apps:

Work with your application developers and owners to understand their needs and apply the
appropriate resource quotas.

For more information about available resource objects, scopes, and priorities, see Resource quotas
in Kubernetes.

apiVersion: v1
kind: ResourceQuota
metadata:
 name: dev-app-team
spec:
 hard:
 cpu: “10”
 memory: 20Gi
 pods: “10”

kubectl apply -f dev-app-team-quotas.yaml --namespace dev-apps

Best practice guidance - To maintain the availability of applications, define Pod Disruption Budgets
(PDBs) to make sure that a minimum number of pods are available in the cluster.

There are two disruptive events that cause pods to be removed:

Plan for availability using pod disruption budgets

• Involuntary disruptions are events beyond the typical control of the cluster operator or
application owner.

These involuntary disruptions include a hardware failure on the physical machine, a kernel
panic, or the deletion of a node VM

•

6 MULTI-TENANCY | Best practices for basic scheduler features

• Voluntary disruptions are events requested by the cluster operator or application owner.

These voluntary disruptions include cluster upgrades, an updated deployment template, or
accidentally deleting a pod.

•

The involuntary disruptions can be mitigated by using multiple replicas of your pods in a deployment.
Running multiple nodes in the AKS cluster also helps with these involuntary disruptions. For voluntary
disruptions, Kubernetes provides pod disruption budgets that let the cluster operator define a mini-
mum available or maximum unavailable resource count. These pod disruption budgets let you plan
for how deployments or replica sets respond when a voluntary disruption event occurs.

If a cluster is to be upgraded or a deployment template updated, the Kubernetes scheduler makes
sure additional pods are scheduled on other nodes before the voluntary disruption events can
continue. The scheduler waits before a node is rebooted until the defined number of pods are
successfully scheduled on other nodes in the cluster.

Let’s look at an example of a replica set with five pods that run NGINX. The pods in the replica set as
assigned the label app: nginx-frontend. During a voluntary disruption event, such as a cluster up-
grade, you want to make sure at least three pods continue to run. The following YAML manifest for a
PodDisruptionBudget object defines these requirements:

You can also define a percentage, such as 60%, which allows you to automatically compensate for the
replica set scaling up the number of pods.

You can define a maximum number of unavailable instances in a replica set. Again, a percentage for
the maximum unavailable pods can also be defined. The following pod disruption budget YAML
manifest defines that no more than two pods in the replica set be unavailable:

apiVersion: policy/v1beta1
kind: PodDisruptionBudget
metadata:
 name: nginx-pdb
spec:
 minAvailable: 3
 selector:
 matchLabels:
 app: nginx-frontend

apiVersion: policy/v1beta1
kind: PodDisruptionBudget
metadata:
 name: nginx-pdb
spec:
 maxUnavailable: 2
 selector:
 matchLabels:
 app: nginx-frontend

7 MULTI-TENANCY | Best practices for basic scheduler features

Work with your application developers and owners to understand their needs and apply the
appropriate pod disruption budgets.

For more information about using pod disruption budgets, see Specify a disruption budget for your
application.

Best practice guidance - Regularly run the latest version of kube-advisor open source tool to detect
issues in your cluster. If you apply resource quotas on an existing AKS cluster, run kube-advisor first to
find pods that don’t have resource requests and limits defined.

The kube-advisor tool is an associated AKS open source project that scans a Kubernetes cluster and
reports on issues that it finds. One useful check is to identify pods that don’t have resource requests
and limits in place.

In an AKS cluster that hosts multiple development teams and applications, it can be hard to track
pods without these resource requests and limits set. As a best practice, regularly run kube-advisor
on your AKS clusters, especially if you don’t assign resource quotas to namespaces.

Regularly check for cluster issues with kube-advisor

Once your pod disruption budget is defined, you create it in your AKS cluster as with any other
Kubernetes object:

kubectl apply -f nginx-pdb.yaml

8 MULTI-TENANCY | Best practices for advanced scheduler features

Multi-tenancy

As you manage clusters in Azure Kubernetes Service (AKS), you often
need to isolate teams and workloads. The Kubernetes scheduler provides
advanced features that let you control which pods can be scheduled on
certain nodes, or how multi-pod applications can appropriately distributed
across the cluster.

This best practices article focuses on advanced Kubernetes scheduling
features for cluster operators. In this article, you learn how to:

Use taints and tolerations to limit what pods can be scheduled on
nodes

Give preference to pods to run on certain nodes with node selectors
or node affinity

Split apart or group together pods with inter-pod affinity or
anti-affinity

•

•

Best practices for advanced scheduler
features

•

9 MULTI-TENANCY | Best practices for advanced scheduler features

• A taint is applied to a node that indicates only specific pods can be scheduled on them.

A toleration is then applied to a pod that allows them to tolerate a node’s taint.

Best practice guidance - Limit access for resource-intensive applications, such as ingress controllers,
to specific nodes. Keep node resources available for workloads that require them, and don’t allow
scheduling of other workloads on the nodes.

When you create your AKS cluster, you can deploy nodes with GPU support or a large number of
powerful CPUs. These nodes are often used for large data processing workloads such as machine
learning (ML) or artificial intelligence (AI). As this type of hardware is typically an expensive node re-
source to deploy, limit the workloads that can be scheduled on these nodes. You may instead wish to
dedicate some nodes in the cluster to run ingress services, and prevent other workloads.

The Kubernetes scheduler can use taints and tolerations to restrict what workloads can run on nodes.

Provide dedicated nodes using taints and tolerations

•
When you deploy a pod to an AKS cluster, Kubernetes only schedules pods on nodes where a toler-
ation is aligned with the taint. As an example, assume you have a nodepool in your AKS cluster for
nodes with GPU support. You define name, such as gpu, then a value for scheduling. If you set this
value to NoSchedule, the Kubernetes scheduler can’t schedule pods on the node if the pod doesn’t
define the appropriate toleration.

With a taint applied to nodes, you then define a toleration in the pod specification that allows
scheduling on the nodes. The following example defines the sku: gpu and effect: NoSchedule to
tolerate the taint applied to the node in the previous step:

kind: Pod
apiVersion: v1
metadata:
 name: tf-mnist
spec:
 containers:
 - name: tf-mnist
 image: microsoft/samples-tf-mnist-demo:gpu
 resources:
 requests:
 cpu: 0.5
 memory: 2Gi
 limits:
 cpu: 4.0
 memory: 16Gi
 tolerations:
 - key: “sku”
 operator: “Equal”
 value: “gpu”
 effect: “NoSchedule”

kubectl taint node aks-nodepool1 sku=gpu:NoSchedule

10 MULTI-TENANCY | Best practices for advanced scheduler features

Best practice guidance - Control the scheduling of pods on nodes using node selectors, node affin-
ity, or inter-pod affinity. These settings allow the Kubernetes scheduler to logically isolate workloads,
such as by hardware in the node.

Taints and tolerations are used to logically isolate resources with a hard cut-off - if the pod doesn’t
tolerate a node’s taint, it isn’t scheduled on the node. An alternate approach is to use node selec-
tors. You label nodes, such as to indicate locally attached SSD storage or a large amount of memory,
and then define in the pod specification a node selector. Kubernetes then schedules those pods on
a matching node. Unlike tolerations, pods without a matching node selector can be scheduled on
labeled nodes. This behavior allows unused resources on the nodes to consume, but gives priority to
pods that define the matching node selector.

Control pod scheduling using node selectors and affinity

When this pod is deployed, such as using kubectl apply -f gpu-toleration.yaml, Kubernetes can
successfully schedule the pod on the nodes with the taint applied. This logical isolation lets you
control access to resources within a cluster.

When you apply taints, work with your application developers and owners to allow them to define the
required tolerations in their deployments.

For more information about taints and tolerations, see applying taints and tolerations.

When you upgrade a node pool in AKS, taints and tolerations follow a set pattern as they’re applied
to new nodes:

Behavior of taints and tolerations in AKS

• Let’s assume you have a two-node cluster - node1 and node2. When you upgrade, an
additional node (node3) is created.

The taints from node1 are applied to node3, then node1 is then deleted.

Another new node is created (named node1, since the previous node1 was deleted), and the
node2 taints are applied to the new node1. Then, node2 is deleted.

In essence node1 becomes node3, and node2 becomes node1.

•

•

•

Default clusters without virtual machine scale support•

• Again, let’s assume you have a two-node cluster - node1 and node2. You upgrade the
node pool.

Two additional nodes are created, node3 and node4, and the taints are passed on
respectively.

The original node1 and node2 are deleted.

•

•

Clusters that use virtual machine scale sets (currently in preview in AKS)•

When you scale a node pool in AKS, taints and tolerations do not carry over by design.

11 MULTI-TENANCY | Best practices for advanced scheduler features

A node selector is a basic way to assign pods to a given node. More flexibility is available using node
affinity. With node affinity, you define what happens if the pod can’t be matched with a node. You can
require that Kubernetes scheduler matches a pod with a labeled host. Or, you can prefer a match but
allow the pod to be scheduled on a different host if not match is available.

The following example sets the node affinity to requiredDuringSchedulingIgnoredDuringExecution.
This affinity requires the Kubernetes schedule to use a node with a matching label. If no node is avail-
able, the pod has to wait for scheduling to continue. To allow the pod to be scheduled on a different
node, you can instead set the value to preferredDuringScheduledIgnoreDuringExecution:

Node affinity

When you use these scheduler options, work with your application developers and owners to allow
them to correctly define their pod specifications.

For more information about using node selectors, see Assigning Pods to Nodes.

A pod specification then adds the nodeSelector property to define a node selector that matches the
label set on a node:

kind: Pod
apiVersion: v1
metadata:
 name: tf-mnist
spec:
 containers:
 - name: tf-mnist
 image: microsoft/samples-tf-mnist-demo:gpu
 resources:
 requests:
 cpu: 0.5
 memory: 2Gi
 limits:
 cpu: 4.0
 memory: 16Gi
 nodeSelector:
 hardware: highmem

Let’s look at an example of nodes with a high amount of memory. These nodes can give preference to
pods that request a high amount of memory. To make sure that the resources don’t sit idle, they also
allow other pods to run.

kubectl label node aks-nodepool1 hardware:highmem

12 MULTI-TENANCY | Best practices for advanced scheduler features

One final approach for the Kubernetes scheduler to logically isolate workloads is using inter-pod
affinity or anti-affinity. The settings define that pods shouldn’t be scheduled on a node that has an
existing matching pod, or that they should be scheduled. By default, the Kubernetes scheduler tries
to schedule multiple pods in a replica set across nodes. You can define more specific rules around
this behavior.

A good example is a web application that also uses an Azure Cache for Redis. You can use pod
anti-affinity rules to request that the Kubernetes scheduler distributes replicas across nodes. You can
then use affinity rules to make sure that each web app component is scheduled on the same host as
a corresponding cache. The distribution of pods across nodes looks like the following example:

Inter-pod affinity and anti-affinity

This example is a more complex deployment than the use of node selectors or node affinity. The de-
ployment gives you control over how Kubernetes schedules pods on nodes and can logically isolate
resources. For a complete example of this web application with Azure Cache for Redis example, see
Colocate pods on the same node.

Node 1 Node 2 Node 3

webapp-1 webapp-2 webapp-3

cache-1 cache-2 cache-3

The IgnoredDuringExecution part of the setting indicates that if the node labels change, the pod
shouldn’t be evicted from the node. The Kubernetes scheduler only uses the updated node labels for
new pods being scheduled, not pods already scheduled on the nodes.

For more information, see Affinity and anti-affinity.

kind: Pod
apiVersion: v1
metadata:
 name: tf-mnist
spec:
 containers:
 - name: tf-mnist
 image: microsoft/samples-tf-mnist-demo:gpu
 resources:
 requests:
 cpu: 0.5
 memory: 2Gi
 limits:
 cpu: 4.0
 memory: 16Gi
 affinity:
 nodeAffinity:
 requiredDuringSchedulingIgnoredDuringExecution:
 nodeSelectorTerms:
 - matchExpressions:
 - key: hardware
 operator: In
 values: highmem

13 MULTI-TENANCY | Best practices for authentication and authorization

Multi-tenancy

As you deploy and maintain clusters in Azure Kubernetes Service (AKS),
you need to implement ways to manage access to resources and services.
Without these controls, accounts may have access to resources and ser-
vices they don’t need. It can also be hard to track which set of credentials
were used to make changes.

This best practices article focuses on how a cluster operator can manage
access and identity for AKS clusters. In this article, you learn how to:

Authenticate AKS cluster users with Azure Active Directory

Control access to resources with role-based access controls (RBAC)

Use a managed identity to authenticate themselves with other services

•

•

Best practices for authentication and
authorization

•

Best practice guidance - Deploy AKS clusters with Azure AD integration. Using Azure AD centralizes
the identity management component. Any change in user account or group status is automatically
updated in access to the AKS cluster. Use Roles or ClusterRoles and Bindings, as discussed in the next
section, to scope users or groups to least amount of permissions needed.

The developers and application owners of your Kubernetes cluster need access to different resources.
Kubernetes doesn’t provide an identity management solution to control which users can interact with
what resources. Instead, you typically integrate your cluster with an existing identity solution. Azure
Active Directory (AD) provides an enterprise-ready identity management solution, and can integrate
with AKS clusters.

With Azure AD-integrated clusters in AKS, you create Roles or ClusterRoles that define access per-
missions to resources. You then bind the roles to users or groups from Azure AD. These Kubernetes
role-based access controls (RBAC) are discussed in the next section. The integration of Azure AD and
how you control access to resources can be seen in the following diagram:

Use Azure Active Directory

14 MULTI-TENANCY | Best practices for authentication and authorization

1. Developer authenticates with Azure AD.

2. The Azure AD token issuance endpoint issues the access token.

3. The developer performs an action using the Azure AD token, such as kubectl create pod

4. Kubernetes validates the token with Azure Active Directory and fetches the developer’s group
 memberships.

5. Kubernetes role-based access control (RBAC) and cluster policies are applied.

6. Developer’s request is successful or not based on previous validation of Azure AD group
 membership and Kubernetes RBAC and policies.

To create an AKS cluster that uses Azure AD, see Integrate Azure Active Directory with AKS.

Best practice guidance - Use Kubernetes RBAC to define the permissions that users or groups have
to resources in the cluster. Create roles and bindings that assign the least amount of permissions
required. Integrate with Azure AD so any change in user status or group membership is automatically
updated and access to cluster resources is current.

In Kubernetes, you can provide granular control of access to resources in the cluster. Permissions can
be defined at the cluster level, or to specific namespaces. You can define what resources can be man-
aged, and with what permissions. These roles are the applied to users or groups with a binding. For
more information about Roles, ClusterRoles, and Bindings, see Access and identity options for Azure
Kubernetes Service (AKS).

As an example, you can create a Role that grants full access to resources in the namespace named
finance-app, as shown in the following example YAML manifest:

Use role-based access controls (RBAC)

15 MULTI-TENANCY | Best practices for authentication and authorization

A RoleBinding is then created that binds the Azure AD user developer1@contoso.com to the RoleBind-
ing, as shown in the following YAML manifest:

When developer1@contoso.com is authenticated against the AKS cluster, they have full permissions
to resources in the finance-app namespace. In this way, you logically separate and control access to
resources. Kubernetes RBAC should be used in conjunction with Azure AD-integration, as discussed
in the previous section.

To see how to use Azure AD groups to control access to Kubernetes resources using RBAC, see
Control access to cluster resources using role-based access controls and Azure Active Directory
identities in AKS.

kind: Role
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 name: finance-app-full-access-role
 namespace: finance-app
rules:
- apiGroups: [“”]
 resources: [“*”]
 verbs: [“*”]

kind: RoleBinding
apiVersion: rbac.authorization.k8s.io/v1
metadata:
 name: finance-app-full-access-role-binding
 namespace: finance-app
subjects:
- kind: User
 name: developer1@contoso.com
 apiGroup: rbac.authorization.k8s.io
roleRef:
 kind: Role
 name: finance-app-full-access-role
 apiGroup: rbac.authorization.k8s.io

Best practice guidance - Don’t use fixed credentials within pods or container images, as they are at
risk of exposure or abuse. Instead, use pod identities to automatically request access using a central
Azure AD identity solution.

When pods need access to other Azure services, such as Cosmos DB, Key Vault, or Blob Storage, the
pod needs access credentials. These access credentials could be defined with the container image or
injected as a Kubernetes secret, but need to be manually created and assigned. Often, the credentials
are reused across pods, and aren’t regularly rotated.

Use pod identities

16 MULTI-TENANCY | Best practices for authentication and authorization

Managed identities for Azure resources (currently implemented as an associated AKS open source
project) let you automatically request access to services through Azure AD. You don’t manually define
credentials for pods, instead they request an access token in real time, and can use it to access only
their assigned services. In AKS, two components are deployed by the cluster operator to allow pods
to use managed identities:

When pods request access to an Azure service, network rules redirect the traffic to the Node Man-
agement Identity (NMI) server. The NMI server identifies pods that request access to Azure services
based on their remote address, and queries the Managed Identity Controller (MIC). The MIC checks
for Azure identity mappings in the AKS cluster, and the NMI server then requests an access token
from Azure Active Directory (AD) based on the pod’s identity mapping. Azure AD provides access
to the NMI server, which is returned to the pod. This access token can be used by the pod to then
request access to services in Azure.

In the following example, a developer creates a pod that uses a managed identity to request access
to an Azure SQL Server instance:

• The Node Management Identity (NMI) server is a pod that runs as a DaemonSet on each
node in the AKS cluster. The NMI server listens for pod requests to Azure services.

The Managed Identity Controller (MIC) is a central pod with permissions to query the
Kubernetes API server and checks for an Azure identity mapping that corresponds to a pod.

•

1. Cluster operator first creates a service account that can be used to map identities when pods
 request access to services.

2. The NMI server and MIC are deployed to relay any pod requests for access tokens to Azure AD.

3. A developer deploys a pod with a managed identity that requests an access token through the
 NMI server.

4. The token is returned to the pod and used to access an Azure SQL Server instance.

Managed pod identities is an AKS open source project, and is not supported by Azure technical sup-
port. It is provided to gather feedback and bugs from our community. The project is not recommend-
ed for production use.

To use pod identities, see Azure Active Directory identities for Kubernetes applications.

17 SECURITY | Best practices for cluster security and upgrades

Security

As you manage clusters in Azure Kubernetes Service (AKS), the security of
your workloads and data is a key consideration. Especially when you run
multi-tenant clusters using logical isolation, you need to secure access to
resources and workloads. To minimize the risk of attack, you also need to
make sure you apply the latest Kubernetes and node OS security updates.

This article focuses on how to secure your AKS cluster. You learn how to:

Use Azure Active Directory and role-based access controls to secure
API server access

Secure container access to node resources

Upgrade an AKS cluster to the latest Kubernetes version

Keep nodes update to date and automatically apply security patches

•

•

Best practices for cluster security and
upgrades

•

•

You can also read the best practices for container image management
and for pod security.

Best practice guidance - Securing access to the Kubernetes API-Server is one of the most important
things you can do to secure your cluster. Integrate Kubernetes role-based access control (RBAC) with
Azure Active Directory to control access to the API server. These controls let you secure AKS the same
way that you secure access to your Azure subscriptions.

Secure access to the API server and cluster nodes

18 SECURITY | Best practices for cluster security and upgrades

The Kubernetes API server provides a single connection point for requests to perform actions within
a cluster. To secure and audit access to the API server, limit access and provide the least privileged
access permissions required. This approach isn’t unique to Kubernetes, but is especially important
when the AKS cluster is logically isolated for multi-tenant use.

Azure Active Directory (AD) provides an enterprise-ready identity management solution that
integrates with AKS clusters. As Kubernetes doesn’t provide an identity management solution, it can
otherwise be hard to provide a granular way to restrict access to the API server. With Azure AD-inte-
grated clusters in AKS, you use your existing user and group accounts to authenticate users to the
API server.

Use Kubernetes RBAC and Azure AD-integration to secure the API server and provide the least
number of permissions required to a scoped set of resources, such as a single namespace. Different
users or groups in Azure AD can be granted different RBAC roles. These granular permissions let you
restrict access to the API server, and provide a clear audit trail of actions performed.

The recommended best practice is to use groups to provide access to files and folders versus indi-
vidual identities, use Azure AD group membership to bind users to RBAC roles rather than individual
users. As a user’s group membership changes, their access permissions on the AKS cluster would
change accordingly. If you bind the user directly to a role, their job function may change. The Azure
AD group memberships would update, but permissions on the AKS cluster would not reflect that. In
this scenario, the user ends up being granted more permissions than a user requires.

For more information about Azure AD integration and RBAC, see Best practices for authentication
and authorization in AKS.

Best practice guidance - Limit access to actions that containers can perform. Provide the least num-
ber of permissions, and avoid the use of root / privileged escalation.

In the same way that you should grant users or groups the least number of privileges required, con-
tainers should also be limited to only the actions and processes that they need. To minimize the risk
of attack, don’t configure applications and containers that require escalated privileges or root access.
For example, set allowPrivilegeEscalation: false in the pod manifest. These pod security contexts
are built in to Kubernetes and let you define additional permissions such as the user or group to run
as, or what Linux capabilities to expose. For more best practices, see Secure pod access to resources.

Secure container access to resources

19 SECURITY | Best practices for cluster security and upgrades

For more granular control of container actions, you can also use built-in Linux security features such
as AppArmor and seccomp. These features are defined at the node level, and then implemented
through a pod manifest.

Kubernetes environments, in AKS or elsewhere, aren’t completely safe for hostile multi-tenant
usage. Additional security features such as AppArmor, seccomp, Pod Security Policies, or more
fine-grained role-based access controls (RBAC) for nodes make exploits more difficult. However,
for true security when running hostile multi-tenant workloads, a hypervisor is the only level of
security that you should trust. The security domain for Kubernetes becomes the entire cluster, not
an individual node. For these types of hostile multi-tenant workloads, you should use physically
isolated clusters.

To limit the actions that containers can perform, you can use the AppArmor Linux kernel security
module. AppArmor is available as part of the underlying AKS node OS, and is enabled by default.
You create AppArmor profiles that restrict actions such as read, write, or execute, or system functions
such as mounting filesystems. Default AppArmor profiles restrict access to various /proc and /sys
locations, and provide a means to logically isolate containers from the underlying node. AppArmor
works for any application that runs on Linux, not just Kubernetes pods.

App Armor

To see AppArmor in action, the following example creates a profile that prevents writing to files. SSH
to an AKS node, then create a file named deny-write.profile and paste the following content:

#include <tunables/global>
profile k8s-apparmor-example-deny-write flags=(attach_
disconnected) {
 #include <abstractions/base>

 file,
 # Deny all file writes.
 deny /** w,
}

20 SECURITY | Best practices for cluster security and upgrades

AppArmor profiles are added using the apparmor_parser command. Add the profile to AppArmor and
specify the name of the profile created in the previous step:

There’s no output returned if the profile is correctly parsed and applied to AppArmor. You’re returned
to the command prompt.

From your local machine, now create a pod manifest named aks-apparmor.yaml and paste the follow-
ing content. This manifest defines an annotation for container.apparmor.security.beta.kubernetes
add references the deny-write profile created in the previous steps:

Deploy the sample pod using the kubectl apply command:

With the pod deployed, use the kubectl exec command to write to a file. The command can’t be exe-
cuted, as shown in the following example output:

For more information about AppArmor, see AppArmor profiles in Kubernetes.

sudo apparmor_parser deny-write.profile

apiVersion: v1
kind: Pod
metadata:
 name: hello-apparmor
 annotations:
 container.apparmor.security.beta.kubernetes.io/hello: localhost/k8s-apparmor
-example-deny-write
spec:
 containers:
 - name: hello
 image: busybox
 command: [“sh”, “-c”, “echo ‘Hello AppArmor!’ && sleep 1h”]

kubectl apply -f aks-apparmor.yaml

$ kubectl exec hello-apparmor touch /tmp/test

touch: /tmp/test: Permission denied
command terminated with exit code 1

21 SECURITY | Best practices for cluster security and upgrades

While AppArmor works for any Linux application, seccomp (secure computing) works at the pro-
cess level. Seccomp is also a Linux kernel security module, and is natively supported by the Docker
runtime used by AKS nodes. With seccomp, the process calls that containers can perform are limited.
You create filters that define what actions to allow or deny, and then use annotations within a pod
YAML manifest to associate with the seccomp filter. This aligns to the best practice of only granting
the container the minimal permissions that are needed to run, and no more.

To see seccomp in action, create a filter that prevents changing permissions on a file. SSH to an AKS
node, then create a seccomp filter named /var/lib/kubelet/seccomp/prevent-chmod and paste the
following content:

Secure computing

From your local machine, now create a pod manifest named aks-seccomp.yaml and paste the fol-
lowing content. This manifest defines an annotation for seccomp.security.alpha.kubernetes.io and
references the prevent-chmod filter created in the previous step:

Deploy the sample pod using the kubectl apply command:

{
 “defaultAction”: “SCMP_ACT_ALLOW”,
 “syscalls”: [
 {
 “name”: “chmod”,
 “action”: “SCMP_ACT_ERRNO”
 }
]
}

apiVersion: v1
kind: Pod
 metadata:
 name: chmod-prevented
 annotations:
 seccomp.security.alpha.kubernetes.io/pod: localhost/prevent-chmod
spec:
 containers:
 - name: chmod
 image: busybox
 command:
 - “chmod”
 args:
 - “777”
 - /etc/hostname
 restartPolicy: Never

kubectl apply -f ./aks-seccomp.yaml

22 SECURITY | Best practices for cluster security and upgrades

Best practice guidance - To stay current on new features and bug fixes, regularly upgrade to the
Kubernetes version in your AKS cluster.

Kubernetes releases new features at a quicker pace than more traditional infrastructure platforms.
Kubernetes updates include new features, and bug or security fixes. New features typically move
through an alpha and then beta status before they become stable and are generally available and
recommended for production use. This release cycle should allow you to update Kubernetes without
regularly encountering breaking changes or adjusting your deployments and templates.

AKS supports four minor versions of Kubernetes. This means that when a new minor patch version
is introduced, the oldest minor version and patch releases supported are retired. Minor updates to
Kubernetes happen on a periodic basis. Make sure that you have a governance process to check and
upgrade as needed so you don’t fall out of support. For more information, see Supported Kubernetes
versions AKS.

To check the versions that are available for your cluster, use the az aks get-upgrades command as
shown in the following example:

Regularly update to the latest version of Kubernetes

You can then upgrade your AKS cluster using the az aks upgrade command. The upgrade process
safely cordons and drains one node at a time, schedules pods on remaining nodes, and then deploys
a new node running the latest OS and Kubernetes versions.

For more information about upgrades in AKS, see Supported Kubernetes versions in AKS and
Upgrade an AKS cluster.

For more information about available filters, see Seccomp security profiles for Docker.

View the status of the pods using the kubectl get pods command. The pod reports an error. The
chmod command is prevented from running by the seccomp filter, as shown in the following example
output:

$ kubectl get pods

NAME READY STATUS RESTARTS AGE
chmod-prevented 0/1 Error 0 7s

az aks get-upgrades --resource-group myResourceGroup --name myAKSCluster

az aks upgrade --resource-group myResourceGroup --name myAKSCluster --kubernetes-version 1.11.8

23 SECURITY | Best practices for cluster security and upgrades

If you want finer grain control over when reboots happen, kured can integrate with Prometheus to
prevent reboots if there are other maintenance events or cluster issues in progress. This integration
minimizes additional complications by rebooting nodes while you are actively troubleshooting other
issues.

For more information about how to handle node reboots, see Apply security and kernel updates to
nodes in AKS.

Best practice guidance - AKS automatically downloads and installs security fixes on each of the
worker nodes, but does not automatically reboot if necessary. Use kured to watch for pending re-
boots, then safely cordon and drain the node to allow the node to reboot, apply the updates and be
as secure as possible with respect to the OS.

Each evening, the AKS nodes get security patches available through their distro update channel. This
behavior is configured automatically as the nodes are deployed in an AKS cluster. To minimize disrup-
tion and potential impact to running workloads, nodes are not automatically rebooted if a security
patch or kernel update requires it.

The open-source kured (KUbernetes REboot Daemon) project by Weaveworks watches for pending
node reboots. When a node applies updates that require a reboot, the node is safely cordoned and
drained to move and schedule the pods on other nodes in the cluster. Once the node is rebooted, it
is added back into the cluster and Kubernetes resumes scheduling pods on it. To minimize disruption,
only one node at a time is permitted to be rebooted by kured.

Process node updates and reboots using kured

24 SECURITY | Best practices for container image management and security

Security

As you develop and run applications in Azure Kubernetes Service (AKS),
the security of your containers and container images is a key consider-
ation. Containers that include out of date base images or unpatched ap-
plication runtimes introduce a security risk and possible attack vector. To
minimize these risks, you should integrate tools that scan for and reme-
diate issues in your containers at build time as well as runtime. The earlier
in the process the vulnerability or out of date base image is caught, the
more secure the cluster. In this article, containers means both the contain-
er images stored in a container registry, and the running containers.

This article focuses on how to secure your containers in AKS. You learn
how to:

Scan for and remediate image vulnerabilities

Use a trusted registry with digitally signed container images

Automatically trigger and redeploy container images when a base
image is updated

•

•

Best practices for container image
management and security

•

You can also read the best practices for cluster security and for pod
security.

25 SECURITY | Best practices for container image management and security

Best practice guidance - Scan your container images for vulnerabilities, and only deploy images that
have passed validation. Regularly update the base images and application runtime, then redeploy
workloads in the AKS cluster.

One concern with the adoption of container-based workloads is verifying the security of images and
runtime used to build your own applications. How do you make sure that you don’t introduce security
vulnerabilities into your deployments? Your deployment workflow should include a process to scan
container images using tools such as Twistlock or Aqua, and then only allow verified images to be
deployed.

Secure the images and run time

In a real-world example, you can use a continuous integration and continuous deployment (CI/CD)
pipeline to automate the image scans, verification, and deployments. Azure Container Registry in-
cludes these vulnerabilities scanning capabilities.

Best practice guidance - As you use base images for application images, use automation to build
new images when the base image is updated. As those base images typically include security fixes,
update any downstream application container images.

Each time a base image is updated, any downstream container images should also be updated. This
build process should be integrated into validation and deployment pipelines such as Azure Pipelines
or Jenkins. These pipelines makes sure that your applications continue to run on the updated based
images. Once your application container images are validated, the AKS deployments can then be
updated to run the latest, secure images.

Azure Container Registry Tasks can also automatically update container images when the base image
is updated. This feature allows you to build a small number of base images, and regularly keep them
updated with bug and security fixes.

For more information about base image updates, see Automate image builds on base image update
with Azure Container Registry Tasks.

Automatically build new images on base image update

26 SECURITY | Best practices for pod security

Security

As you develop and run applications in Azure Kubernetes Service (AKS),
the security of your pods is a key consideration. Your applications should
be designed for the principle of least number of privileges required. Keep-
ing private data secure is top of mind for customers. You don’t want cre-
dentials like database connection strings, keys, or secrets and certificates
exposed to the outside world where an attacker could take advantage of
those secrets for malicious purposes. Don’t add them to your code or em-
bed them in your container images. This approach would create a risk for
exposure and limit the ability to rotate those credentials as the container
images will need to be rebuilt.

This best practices article focuses on how secure pods in AKS. You learn
how to:

Use pod security context to limit access to processes and services or
privilege escalation

Authenticate with other Azure resources using pod managed identities

Request and retrieve credentials from a digital vault such as Azure Key
Vault

•

•

Best practices for pod security

•

You can also read the best practices for cluster security and for container
image management.

27 SECURITY | Best practices for pod security

Best practice guidance - To run as a different user or group and limit access to the underlying node
processes and services, define pod security context settings. Assign the least number of privileges
required.

For your applications to run correctly, pods should run as a defined user or group and not as root.
The securityContext for a pod or container lets you define settings such as runAsUser or fsGroup to
assume the appropriate permissions. Only assign the required user or group permissions, and don’t
use the security context as a means to assume additional permissions. When you run as a non-root
user, containers cannot bind to the privileged ports under 1024. In this scenario, Kubernetes Services
can be used to disguise the fact that an app is running on a particular port.

A pod security context can also define additional capabilities or permissions for accessing processes
and services. The following common security context definitions can be set:

Secure pod access to resources

• allowPrivilegeEscalation defines if the pod can assume root privileges. Design your
applications so this setting is always set to false.

Linux capabilities let the pod access underlying node processes. Take care with assigning
these capabilities. Assign the least number of privileges needed. For more information, see
Linux capabilities.

SELinux labels is a Linux kernel security module that lets you define access policies for ser-
vices, processes, and filesystem access. Again, assign the least number of privileges needed.
For more information, see SELinux options in Kubernetes.

•

•

The following example pod YAML manifest sets security context settings to define:

• Pod runs as user ID 1000 and part of group ID 2000

Can’t escalate privileges to use root

Allows Linux capabilities to access network interfaces and the host’s real-time (hardware) clock

•

•

apiVersion: v1
kind: Pod
 metadata:
 name: security-context-demo
 spec:
 containers:
 - name: security-context-demo
 image: nginx:1.15.5
 securityContext:
 runAsUser: 1000
 fsGroup: 2000
 allowPrivilegeEscalation: false
 capabilities:
 add: [“NET_ADMIN”, “SYS_TIME”]

28 SECURITY | Best practices for pod security

Best practice guidance - Don’t define credentials in your application code. Use managed identities
for Azure resources to let your pod request access to other resources. A digital vault, such as Azure
Key Vault, should also be used to store and retrieve digital keys and credentials.

To limit the risk of credentials being exposed in your application code, avoid the use of fixed or
shared credentials. Credentials or keys shouldn’t be included directly in your code. If these credentials
are exposed, the application needs to be updated and redeployed. A better approach is to give pods
their own identity and way to authenticate themselves, or automatically retrieve credentials from a
digital vault.

The following associated AKS open source projects let you automatically authenticate pods or request
credentials and keys from a digital vault:

Limit credential exposure

• Managed identities for Azure resources, and

Azure Key Vault FlexVol driver•

Work with your cluster operator to determine what security context settings you need. Try to design
your applications to minimize additional permissions and access the pod requires. There are addi-
tional security features to limit access using AppArmor and seccomp (secure computing) that can be
implemented by cluster operators. For more information, see Secure container access to resources.

Associated AKS open source projects are not supported by Azure technical support. They are
provided to gather feedback and bugs from our community. These projects are not recommended
for production use.

A managed identity for Azure resources lets a pod authenticate itself against any service in Azure that
supports it such as Storage, SQL. The pod is assigned an Azure Identity that lets them authenticate to
Azure Active Directory and receive a digital token. This digital token can be presented to other Azure
services that check if the pod is authorized to access the service and perform the required actions.
This approach means that no secrets are required for database connection strings, for example. The
simplified workflow for pod managed identity is shown in the following diagram:

Use pod managed identities

29 SECURITY | Best practices for pod security

Managed pod identities work great to authenticate against supporting Azure services. For your own
services or applications without managed identities for Azure resources, you still authenticate using
credentials or keys. A digital vault can be used to store these credentials.

When applications need a credential, they communicate with the digital vault, retrieve the latest
credentials, and then connect to the required service. Azure Key Vault can be this digital vault. The
simplified workflow for retrieving a credential from Azure Key Vault using pod managed identities is
shown in the following diagram:

Use Azure Key Vault with FlexVol

With a managed identity, your application code doesn’t need to include credentials to access a
service, such as Azure Storage. As each pod authenticates with its own identity, so you can audit and
review access. If your application connects with other Azure services, use managed identities to limit
credential reuse and risk of exposure.

For more information about pod identities, see Configure an AKS cluster to use pod managed identi-
ties and with your applications.

With Key Vault, you store and regularly rotate secrets such as credentials, storage account keys, or
certificates. You can integrate Azure Key Vault with an AKS cluster using a FlexVolume. The FlexVol-
ume driver lets the AKS cluster natively retrieve credentials from Key Vault and securely provide them
only to the requesting pod. Work with your cluster operator to deploy the Key Vault FlexVol driver
onto the AKS nodes. You can use a pod managed identity to request access to Key Vault and retrieve
the credentials you need through the FlexVolume driver.

30 NETWORK AND STORAGE | Best practices for network connectivity and security

Network and storage

As you create and manage clusters in Azure Kubernetes Service (AKS),
you provide network connectivity for your nodes and applications. These
network resources include IP address ranges, load balancers, and ingress
controllers. To maintain a high quality of service for your applications, you
need to plan for and then configure these resources.

This best practices article focuses on network connectivity and security for
cluster operators. In this article, you learn how to:

Compare the kubenet and Azure CNI network modes in AKS

Plan for required IP addressing and connectivity

Distribute traffic using load balancers, ingress controllers, or a web
application firewalls (WAF)

Securely connect to cluster nodes

•

•

Best practices for network connectivity
and security

•

•

Best practice guidance - For integration with existing virtual networks or on-premises networks, use
Azure CNI networking in AKS. This network model also allows greater separation of resources and
controls in an enterprise environment.

Virtual networks provide the basic connectivity for AKS nodes and customers to access your
applications. There are two different ways to deploy AKS clusters into virtual networks:

Choose the appropriate network model

31 NETWORK AND STORAGE | Best practices for network connectivity and security

For most production deployments, you should use Azure CNI networking. This network model allows
for separation of control and management of resources. From a security perspective, you often want
different teams to manage and secure those resources. Azure CNI networking lets you connect to
existing Azure resources, on-premises resources, or other services directly via IP addresses assigned
to each pod.

When you use Azure CNI networking, the virtual network resource is in a separate resource group to
the AKS cluster. Delegate permissions for the AKS service principal to access and manage these re-
sources. The service principal used by the AKS cluster must have at least Network Contributor permis-
sions on the subnet within your virtual network. If you wish to define a custom role instead of using
the built-in Network Contributor role, the following permissions are required:

• Microsoft.Network/virtualNetworks/subnets/join/action

Microsoft.Network/virtualNetworks/subnets/read•

• Kubenet networking - Azure manages the virtual network resources as the cluster is deployed
and uses the kubenet Kubernetes plugin.

Azure CNI networking - Deploys into an existing virtual network, and uses the Azure Container
Networking Interface (CNI) Kubernetes plugin. Pods receive individual IPs that can route to other
network services or on-premises resources.

•

The Container Networking Interface (CNI) is a vendor-neutral protocol that lets the container runtime
make requests to a network provider. The Azure CNI assigns IP addresses to pods and nodes, and
provides IP address management (IPAM) features as you connect to existing Azure virtual networks.
Each node and pod resource receives an IP address in the Azure virtual network, and no additional
routing is needed to communicate with other resources or services.

For more information about AKS service principal delegation, see Delegate access to other Azure
resources.

As each node and pod receive its own IP address, plan out the address ranges for the AKS subnets.
The subnet must be large enough to provide IP addresses for every node, pods, and network re-
sources that you deploy. Each AKS cluster must be placed in its own subnet. To allow connectivity to
on-premises or peered networks in Azure, don’t use IP address ranges that overlap with existing net-
work resources. There are default limits to the number of pods that each node runs with both kuben-
et and Azure CNI networking. To handle scale up events or cluster upgrades, you also need additional
IP addresses available for use in the assigned subnet.

To calculate the IP address required, see Configure Azure CNI networking in AKS.

32 NETWORK AND STORAGE | Best practices for network connectivity and security

Although kubenet doesn’t require you to set up the virtual networks before the cluster is deployed,
there are disadvantages:

Kubenet networking

• Nodes and pods are placed on different IP subnets. User Defined Routing (UDR) and IP forward-
ing is used to route traffic between pods and nodes. This additional routing may reduce network
performance.

Connections to existing on-premises networks or peering to other Azure virtual networks can be
complex.

•

Kubenet is suitable for small development or test workloads, as you don’t have to create the virtual
network and subnets separately from the AKS cluster. Simple websites with low traffic, or to lift and
shift workloads into containers, can also benefit from the simplicity of AKS clusters deployed with
kubenet networking. For most production deployments, you should plan for and use Azure CNI net-
working. You can also configure your own IP address ranges and virtual networks using kubenet.

Best practice guidance - To distribute HTTP or HTTPS traffic to your applications, use ingress
resources and controllers. Ingress controllers provide additional features over a regular Azure load
balancer, and can be managed as native Kubernetes resources.

An Azure load balancer can distribute customer traffic to applications in your AKS cluster, but it’s
limited in what it understands about that traffic. A load balancer resource works at layer 4, and
distributes traffic based on protocol or ports. Most web applications that use HTTP or HTTPS should
use Kuberenetes ingress resources and controllers, which work at layer 7. Ingress can distribute traffic
based on the URL of the application and handle TLS/SSL termination. This ability also reduces the
number of IP addresses you expose and map. With a load balancer, each application typically needs a
public IP address assigned and mapped to the service in the AKS cluster. With an ingress resource, a
single IP address can distribute traffic to multiple applications.

Distribute ingress traffic

33 NETWORK AND STORAGE | Best practices for network connectivity and security

There are two components for ingress:

• An ingress resource, and

An ingress controller•
The ingress resource is a YAML manifest of kind: Ingress that defines the host, certificates, and rules
to route traffic to services that run in your AKS cluster. The following example YAML manifest would
distribute traffic for myapp.com to one of two services, blogservice or storeservice. The customer is
directed to one service or the other based on the URL they access.

kind: Ingress
metadata:
 name: myapp-ingress
 annotations: kubernetes.io/ingress.class: “PublicIngress”
spec:
 tls:
 - hosts:
 - myapp.com
 secretName: myapp-secret
 rules:
 - host: myapp.com
 http:
 paths:
 - path: /blog
 backend:
 serviceName: blogservice
 servicePort: 80
 - path: /store
 backend:
 serviceName: storeservice
 servicePort: 80

An ingress controller is a daemon that runs on an AKS node and watches for incoming requests. Traf-
fic is then distributed based on the rules defined in the ingress resource. The most common ingress
controller is based on NGINX. AKS doesn’t restrict you to a specific controller, so you can use other
controllers such as Contour, HAProxy, or Traefik.

There are many scenarios for ingress, including the following how-to guides:

• Create a basic ingress controller with external network connectivity

Create an ingress controller that uses an internal, private network and IP address

Create an ingress controller that uses your own TLS certificates

Create an ingress controller that uses Let’s Encrypt to automatically generate TLS certificates
with a dynamic public IP address or with a static public IP address

•
•
•

34 NETWORK AND STORAGE | Best practices for network connectivity and security

Best practice guidance - To scan incoming traffic for potential attacks, use a web application firewall
(WAF) such as Barracuda WAF for Azure or Azure Application Gateway. These more advanced network
resources can also route traffic beyond just HTTP and HTTPS connections or basic SSL termination.

An ingress controller that distributes traffic to services and applications is typically a Kubernetes
resource in your AKS cluster. The controller runs as a daemon on an AKS node, and consumes some
of the node’s resources such as CPU, memory, and network bandwidth. In larger environments, you
often want to offload some of this traffic routing or TLS termination to a network resource outside of
the AKS cluster. You also want to scan incoming traffic for potential attacks.

Secure traffic with a web application firewall (WAF)

A web application firewall (WAF) provides an additional layer of security by filtering the incoming
traffic. The Open Web Application Security Project (OWASP) provides a set of rules to watch for
attacks like cross site scripting or cookie poisoning. Azure Application Gateway (currently in preview
in AKS) is a WAF that can integrate with AKS clusters to provide these security features, before the
traffic reaches your AKS cluster and applications. Other third-party solutions also perform these
functions, so you can continue to use existing investments or expertise in a given product.

Load balancer or ingress resources continue to run in your AKS cluster to further refine the traffic
distribution. App Gateway can be centrally managed as an ingress controller with a resource
definition. To get started, create an Application Gateway Ingress controller.

35 NETWORK AND STORAGE | Best practices for network connectivity and security

Best practice guidance - Use network policies to allow or deny traffic to pods. By default, all
traffic is allowed between pods within a cluster. For improved security, define rules that limit pod
communication.

Network policy (currently in preview in AKS) is a Kubernetes feature that lets you control the traffic
flow between pods. You can choose to allow or deny traffic based on settings such as assigned labels,
namespace, or traffic port. The use of network policies gives a cloud-native way to control the flow of
traffic. As pods are dynamically created in an AKS cluster, the required network policies can be auto-
matically applied. Don’t use Azure network security groups to control pod-to-pod traffic, use network
policies.

To use network policy, the feature must be enabled when you create an AKS cluster. You can’t enable
network policy on an existing AKS cluster. Plan ahead to make sure that you enable network policy on
clusters and can use them as needed.

A network policy is created as a Kubernetes resource using a YAML manifest. The policies are applied
to defined pods, then ingress or egress rules define how the traffic can flow. The following example
applies a network policy to pods with the app: backend label applied to them. The ingress rule then
only allows traffic from pods with the app: frontend label:

Control traffic flow with network policies

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: backend-policy
spec:
 podSelector:
 matchLabels:
 app: backend
 ingress:
 - from:
 - podSelector:
 matchLabels:
 app: frontend

To get started with policies, see Secure traffic between pods using network policies in Azure
Kubernetes Service (AKS).

36 NETWORK AND STORAGE | Best practices for network connectivity and security

Best practice guidance - Don’t expose remote connectivity to your AKS nodes. Create a bastion
host, or jump box, in a management virtual network. Use the bastion host to securely route traffic
into your AKS cluster to remote management tasks.

Most operations in AKS can be completed using the Azure management tools or through the Ku-
bernetes API server. AKS nodes aren’t connected to the public internet, and are only available on a
private network. To connect to nodes and perform maintenance or troubleshoot issues, route your
connections through a bastion host, or jump box. This host should be in a separate management
virtual network that is securely peered to the AKS cluster virtual network.

Securely connect to nodes through a bastion host

The management network for the bastion host should be secured, too. Use an Azure ExpressRoute
or VPN gateway to connect to an on-premises network, and control access using network security
groups.

37 NETWORK AND STORAGE | Best practices for storage and backups

Network and storage

As you create and manage clusters in Azure Kubernetes Service (AKS),
your applications often need storage. It’s important to understand the
performance needs and access methods for pods so that you can provide
the appropriate storage to applications. The AKS node size may impact
these storage choices. You should also plan for ways to back up and test
the restore process for attached storage.

This best practices article focuses on storage considerations for cluster
operators. In this article, you learn:

What types of storage are available

How to correctly size AKS nodes for storage performance

Differences between dynamic and static provisioning of volumes

Ways to back up and secure your data volumes

•

•

Best practices for storage and backups

•

•

Best practice guidance - Understand the needs of your application to pick the right storage. Use
high performance, SSD-backed storage for production workloads. Plan for network-based storage
when there is a need for multiple concurrent connections.

Applications often require different types and speeds of storage. Do your applications need storage
that connects to individual pods, or shared across multiple pods? Is the storage for read-only access
to data, or to write large amounts of structured data? These storage needs determine the most ap-
propriate type of storage to use.

The following table outlines the available storage types and their capabilities:

Choose the appropriate storage type

38 NETWORK AND STORAGE | Best practices for storage and backups

The following table outlines the available storage types and their capabilities:

The two primary types of storage provided for volumes in AKS are backed by Azure Disks or Azure
Files. To improve security, both types of storage use Azure Storage Service Encryption (SSE) by default
that encrypts data at rest. Disks cannot currently be encrypted using Azure Disk Encryption at the
AKS node level.

Azure Files are currently available in the Standard performance tier. Azure Disks are available in Stan-
dard and Premium performance tiers:

• Premium disks are backed by high-performance solid-state disks (SSDs). Premium disks are
recommended for all production workloads.

Standard disks are backed by regular spinning disks (HDDs), and are good for archival or
infrequently accessed data.

•

Understand the application performance needs and access patterns to choose the appropriate stor-
age tier. For more information about Managed Disks sizes and performance tiers, see Azure Managed
Disks overview.

The type of storage you use is defined using Kubernetes storage classes. The storage class is then
referenced in the pod or deployment specification. These definitions work together to create the
appropriate storage and connect it to pods. For more information, see Storage classes in AKS.

Create and use storage classes to define application needs

Best practice guidance - Each node size supports a maximum number of disks. Different node sizes
also provide different amounts of local storage and network bandwidth. Plan for your application
demands to deploy the appropriate size of nodes.

AKS nodes run as Azure VMs. Different types and sizes of VM are available. Each VM size provides
a different amount of core resources such as CPU and memory. These VM sizes have a maximum
number of disks that can be attached. Storage performance also varies between VM sizes for the
maximum local and attached disk IOPS (input/output operations per second).

Size the nodes for storage needs

Use case

Shared configuration

Structured app data

App data, read-only shares

Unstructured data, file system
operations

Azure Files

Azure Disks

Dysk (preview)

BlobFuse
(preview)

Volume plugin

Yes

Yes

Yes

Yes

Read/write
once

Yes

No

Yes

Yes

Read-only
many

Yes

No

No

Yes

Read/write
many

39 NETWORK AND STORAGE | Best practices for storage and backups

If your applications require Azure Disks as their storage solution, plan for and choose an appropriate
node VM size. The amount of CPU and memory isn’t the only factor when you choose a VM size. The
storage capabilities are also important. For example, both the Standard_B2ms and Standard_DS2_v2
VM sizes include a similar amount of CPU and memory resources. Their potential storage perfor-
mance is different, as shown in the following table:

Here, the Standard_DS2_v2 allows double the number of attached disks, and provides three to four
times the amount of IOPS and disk throughput. If you only looked at the core compute resources and
compared costs, you may choose the Standard_B2ms VM size and have poor storage performance
and limitations. Work with your application development team to understand their storage capacity
and performance needs. Choose the appropriate VM size for the AKS nodes to meet or exceed their
performance needs. Regularly baseline applications to adjust VM size as needed.

For more information about available VM sizes, see Sizes for Linux virtual machines in Azure.

Best practice guidance - To reduce management overhead and let you scale, don’t statically create
and assign persistent volumes. Use dynamic provisioning. In your storage classes, define the appro-
priate reclaim policy to minimize unneeded storage costs once pods are deleted.

When you need to attach storage to pods, you use persistent volumes. These persistent volumes can
be created manually or dynamically. Manual creation of persistent volumes adds management over-
head, and limits your ability to scale. Use dynamic persistent volume provisioning to simplify storage
management and allow your applications to grow and scale as needed.

Dynamically provision volumes

Node type and
size

Standard_B2ms

Standard_DS2_v2

2

2

vCPU

8

7

Memory
(GiB)

4

8

Max data
disks

1,920

6,400

Max uncached
disk IOPS

22.5

96

Max uncached
throughput (MBps)

40 NETWORK AND STORAGE | Best practices for storage and backups

A persistent volume claim (PVC) lets you dynamically create storage as needed. The underlying Azure
disks are created as pods request them. In the pod definition, you request a volume to be created
and attached to a designed mount path

For the concepts on how to dynamically create and use volumes, see Persistent Volumes Claims.

To see these volumes in action, see how to dynamically create and use a persistent volume with
Azure Disks or Azure Files.

As part of your storage class definitions, set the appropriate reclaimPolicy. This reclaimPolicy controls
the behavior of the underlying Azure storage resource when the pod is deleted and the persistent
volume may no longer be required. The underlying storage resource can be deleted, or retained
for use with a future pod. The reclaimPolicy can set to retain or delete. Understand your application
needs, and implement regular checks for storage that is retained to minimize the amount of un-used
storage that is used and billed.

For more information about storage class options, see storage reclaim policies.

Best practice guidance - Back up your data using an appropriate tool for your storage type, such as
Velero or Azure Site Recovery. Verify the integrity, and security, of those backups.

When your applications store and consume data persisted on disks or in files, you need to take reg-
ular backups or snapshots of that data. Azure Disks can use built-in snapshot technologies. You may
need to a hook for your applications to flush writes to disk before you perform the snapshot oper-
ation. Velero can back up persistent volumes along with additional cluster resources and configura-
tions. If you can’t remove state from your applications, back up the data from persistent volumes and
regularly test the restore operations to verify data integrity and the processes required.

Understand the limitations of the different approaches to data backups and if you need to quiesce
your data prior to snapshot. Data backups don’t necessarily let you restore your application envi-
ronment of cluster deployment. For more information about those scenarios, see Best practices for
business continuity and disaster recovery in AKS.

Secure and back up your data

41 RUNNING ENTERPRISE-READY WORKLOADS

Running enterprise-ready
workloads

As you manage clusters in Azure Kubernetes Service (AKS), application
uptime becomes important. AKS provides high availability by using mul-
tiple nodes in an availability set. These multiple nodes don’t protect you
from a region failure. To maximize your uptime, implement some business
continuity and disaster recovery features.

This best practices article focuses on considerations that help you plan for
business continuity and disaster recovery in AKS. You learn how to:

Plan for AKS clusters in multiple regions

Route traffic across multiple clusters with Azure Traffic Manager

Use geo-replication for your container image registries

Plan for application state across multiple clusters

Replicate storage across multiple regions

•

•

Best practices for business continuity
and disaster recovery

•

•

•

42 RUNNING ENTERPRISE-READY WORKLOADS

Best practice guidance - When you deploy multiple AKS clusters, choose regions where AKS is avail-
able and use paired regions.

An AKS cluster is deployed into a single region. To protect yourself from region failure, deploy your
application into multiple AKS clusters across different regions. When you plan what regions to deploy
your AKS cluster, the following considerations apply:

Plan for multi-region deployment

• AKS region availability
Choose regions close to your users. AKS is continually expanding into new regions.

Azure paired regions
For your geographic area, choose two regions that are paired with each other. These regions
coordinate platform updates, and prioritize recovery efforts where needed.

Service Availability Level (Hot/Hot, Hot/Warm, Hot/Cold)
Do you want to run both regions at the same time, with one region ready to start serving
traffic, or one region that needs time to get ready to serve traffic.

•
•

•

•
•

AKS region availability and paired regions are joint consideration. Deploy your AKS clusters into
paired regions that are designed to manage region disaster recovery together. For example, AKS is
available in East US and West US. These regions are also paired. These two regions would be recom-
mended when creating an AKS BC/DR strategy.

When you deploy your application, you must also add another step to your CI/CD pipeline to deploy
to these multiple AKS clusters. If you don’t update your deployment pipelines, application deploy-
ments may only be deployed into one of your regions and AKS clusters. Customer traffic that is
directed to a secondary region won’t receive the latest code updates.

Best practice guidance - Azure Traffic Manager can direct customers to their closest AKS cluster and
application instance. For the best performance and redundancy, direct all application traffic through
Traffic Manager before going to your AKS cluster.

With multiple AKS clusters in different regions, you need to control how traffic is directed to the
applications that run in each cluster. Azure Traffic Manager is a DNS-based traffic load balancer that
can distribute network traffic across regions. You can route users based on cluster response time, or
based on geography.

Use Azure Traffic Manager to route traffic

43 RUNNING ENTERPRISE-READY WORKLOADS

With a single AKS cluster, customers typically connect to the Service IP or DNS name of a given
application. In a multi-cluster deployment, customers should connect to a Traffic Manager DNS name
that points to the services on each AKS cluster. These services are defined using Traffic Manager end-
points. Each endpoint is the Service Load Balancer IP. This configuration lets you direct network traffic
from the Traffic Manager endpoint in one region to the endpoint in a different region.

Traffic Manager is used to perform the DNS lookups and return the most appropriate endpoint for
a user. Nested profiles can be used, with priority given for a primary location. For example, a user
should primarily connect to their closest geographic region. If that region has a problem, Traffic Man-
ager instead directs them to a secondary region. This approach makes sure customers can always
connect to an application instance, even if their closest geographic region is unavailable.

For steps on how to set up these endpoints and routing, see Configure the geographic traffic routing
method using Traffic Manager.

44 RUNNING ENTERPRISE-READY WORKLOADS

Azure Traffic Manager uses DNS (layer 3) to shape traffic. Azure Front Door (currently in preview)
provides an HTTP/HTTPS (layer 7) routing option. Additional features of Front Door include SSL
termination, custom domain, Web Application Firewall, URL Rewrite, and Session Affinity.

Review the needs of your application traffic to understand which solution is the most suitable.

Layer 7 application routing with Azure Front Door

Best practice guidance - Store your container images in Azure Container Registry and geo-replicate
the registry to each AKS region.

To deploy and run your applications in AKS, you need a way to store and pull the container images.
Azure Container Registry (ACR) can integrate with AKS to securely store your container images or
Helm charts. ACR supports multi-master geo-replication to automatically replicate your images to
Azure regions around the world. To improve performance and availability, use ACR geo-replication to
create a registry in each region where you have an AKS cluster. Each AKS cluster then pulls container
images from the local ACR registry in the same region:

Enable geo-replication for container images

• Pulling images from the same region is faster. You pull images from high-speed, low latency
network connections within the same Azure region.

Pulling images from the same region is more reliable. If a region is unavailable, your AKS
cluster pulls the image from a different ACR registry that remains available.

Pulling images from the same region is cheaper. There’s no network egress charge between
datacenters.

•

The benefits of using ACR geo-replication include the following:

•

Geo-replication is a feature of Premium SKU ACR registries. For steps on how to configure replication,
see Azure Container Registry geo-replication.

45 RUNNING ENTERPRISE-READY WORKLOADS

Best practice guidance - Where possible, don’t store service state inside the container. Instead, use
Azure PaaS services that support multi-region replication.

Service state refers to the in-memory or on-disk data that a service requires to function. State in-
cludes the data structures and member variables that the service reads and writes. Depending on
how the service is architected, the state may also include files or other resources that are stored on
disk. For example, the files a database would use to store data and transaction logs.

State can be either externalized or colocated with the code that is manipulating the state. Externaliza-
tion of state is typically done by using a database or other data store that runs on different machines
over the network or out of process on the same machine.

Containers and microservices are most resilient when the processes that run inside them do not re-
tain state. As your applications almost always contain some state, use a Platform as a Service solution
such as Azure Database for MySQL/Postgres or Azure SQL.

For details on for how to build applications that are more portable, see the following guidelines:

Remove service state from inside containers

• The Twelve-Factor App Methodology

Run a web application in multiple Azure Regions•

Best practice guidance - If you use Azure Storage, prepare and test how to migrate your storage
from the primary to the backup region.

Your applications may use Azure Storage for their data. As your applications are spread across multi-
ple AKS clusters in different regions, you need to keep the storage synchronized. Two common ways
of replicating storage include the following approaches:

Create a storage migration plan

• Application-based asynchronous replication

Infrastructure-based asynchronous replication•

Your applications may require persistent storage even after a pod is deleted. In Kubernetes, you can
use Persistent Volumes to persist data storage. These persistent volumes are mounted to node VM,
and then exposed to the pods. Persistent volumes follow pods, even if the pod is moved to a differ-
ent node inside the same cluster.

Depending on the storage solution use, replication strategies may be different. Common storage
solutions such as Gluster, CEPH, Rook, and Portworx all have their own guidance.

The central approach is a common storage point for applications to write their data. This data is then
replicated across regions and then accessed locally.

Infrastructure-based asynchronous replication

46 RUNNING ENTERPRISE-READY WORKLOADS

If you use Azure Managed Disks, available replication and DR solutions include using one of the fol-
lowing approaches:

• Ark on Azure

Azure Site Recovery•

There is currently no Kubernetes-native implementation for application-based asynchronous repli-
cation. With the loosely coupled nature of containers and Kubernetes, any traditional application or
language approach should work. The central approach is for the applications themselves to replicate
the storage requests that are then written to each cluster’s underlying data storage.

Application-based Asynchronous Replication

47 CONCLUSION

Conclusion
We hope you have found the Kubernetes Best Practices guide helpful as a
reference for implementing applications and managing cluster operations.
Please check out our Kubernetes Learning Path program for an end-to-
end series of resources on Kubernetes and about Azure Kubernetes
Service (AKS) core concepts, including infrastructure components, access
and identity, security, network, storage, and scaling. See our infographic
50 days from zero to hero with Kubernetes for complete details

